Electricity and Electronics, 10th Edition Text

By: Richard M. Roberts *(legacy authors Gerrish and Dugger)* ISBN: 978-1-59070-883-5 Copyright: ©2008 Available from <u>G-W.com</u>

<u>Electricity & Electronics</u> presents solid, up-to-date information on the fundamentals of electricity and electronics. The dual approach of this text teaches principles and theory accompanied by hands-on learning. Text content provides a thorough grounding in electrical principles, circuitry, and components. Additional topics include electronic communication and data systems, such as radio, television, and computers. A full chapter in this edition is devoted to microcontrollers.

<u>http://www.RMRoberts.com</u> is a link to the Author's Web Site where you can find the newest updates to the rapidly changing technology.

Experiments are included in numerous chapters with step-by-step instructions.

This textbook is divided into five (5) major sections:

- Section 1 Fundamentals of Electricity and Electronics (Chapters 1-5)
- Section 2 Basic Circuits (Chapters 6-8)
- Section 3 Motors, Generator, and Power Distribution (Chapters 9-13)
- Section 4 Advanced Electronic Circuits (Chapters 14-21)
- Section 5 Electronic Communication & Data Systems (Chapters 22-26)

Course Outline (Textbook) Basics Include:

Chapter 1 Science of Electricity and Electronics

1.1	The Nature of Matter	
	Molecule and the Atom	
	Electrons, Protons, and Neutrons	
	Ionization	

1.2 Static Electricity

Law of Charges

- Experiment 1-1 Demonstrating the Law of Charges
- Applied E & E Copy Machines
- Experiment 1-2 Examining Electrical Induction and Conduction The Coulomb Electrostatic Fields Induction Static Electricity Applications
 - 1.3 Basic Electrical Circuit

Voltage Current Resistance Current, AC and DC Conventional Flow vs. Electron Flow Theory Series and Parallel Fire Safety

1.4 Ohm's Law Electrical Prefixes

Chapter 2 Basic Instruments and Measurements

- 2.1 Basic Analog Meter Movement Iron Vane Meter Movement Meter Scales
- 2.2 Ammeter
- 2.3 Voltmeter

Voltmeter Sensitivity Loading a Circuit

- 2.4 Ohmmeters Ohmmeter Scales
- 2.5 The Volt-Ohm-Milliammeter (VOM) Digital Multimeters Computer Display Meters AC Meter Readings Important Meter Information Electric Shock
- 2.6 Electrical Diagrams

Chapter 3 Introduction to Basic Electrical Circuit Materials

- 3.1 Conductors
 - Conductor Sizes Circular Mils Conductor Insulation Types of Conductors Conductor Resistance
 - Safety Organizations and Standards

3.2 Special Conductor Pathways

Breadboards Printed Circuit Board Chassis 3.3 Common Circuit Devices Switches Connectors Circuit Protection Devices

3.4 Lighting

Incandescent Lamp Principles Discharge Lamp Principles Lumen

3.5 Resistors

Potentiometers Thermistors Resistor Color Code

Chapter 4 Energy

4.3

5.1

- 4.1 Work, Power, and Horsepower
- 4.2 Ohm's Law and Watt's Law
- 4.2 Wattmeter and Watt-Hours
 - Efficiency Energy Efficiency Rating Gears, Pulleys and Power

Chapter 5 Source of Electricity

- Chemical Action Primary Cells Types of Primary Cells Secondary Cells Batteries in Series and Parallel
- Experiment 5-1 Voltage in Series
- Experiment 5-2 Voltages in Parallel

Applied E&E Sound Navigation Ranging (Sonar)

Battery Capacity Material Safety Data Sheets

5.2 Other Sources of Electrical Energy

Electrical Energy from Light

Project 5-1 Photoelectric Controller

Experiment 5-3 Building a Thermacouple Electrical Energy from Heat Electrical Energy from Mechanical Pressure Fuel Cells Magnetohydrodynamic Power Generation Electricity from Magnetism

Chapter 6 Series Circuits

- 6.1 Series Circuit Principles Voltage in a Series Circuit Current in a Series Circuit Resistance in a Series Circuit Determining an Unknown Voltage Power in a Series Circuit
- 6.2 Applications and Troubleshooting Series Circuits
 Applying Ohm's Law
 Airfield Lighting System
 Troubleshooting a Series Circuit Using a Voltmeter

Chapter 7 Parallel Circuits

- 7.1 Parallel Circuit Principles Parallel Circuit Voltage Parallel Circuit Resistance Power in a Parallel Circuit
- 7.2 Applications and Troubleshooting Parallel Circuits Applying Ohm's Law to parallel Circuits Troubleshooting a Parallel Circuit

Chapter 8 Combination Circuits (Series-Parallel)

- 8.1 Reducing a Complex Circuit Reducing to a Simple Series Circuit Reducing to a Simple Parallel Circuit
- 8.2 Solving for Voltage and Current Values Power in a Combination Circuit
- 8.3 Troubleshooting a Combination Circuit

Chapter 9 Magnetism

- 9.1 Basic Magnetic Principles
 - Laws of Magnetism
- Experiment 9-1 Observing Magnetic Lines of Force Magnetic Flux Third Law of Magnetism
 - 9.2 Electric Current and Magnetism Magnetic Circuits The Solenoid Electromagnets
- Experiment 9-2 Testing and Electromagnet

9.3 The Relay

Experiment 9-3Residual MagnetismExperiment 9-4Testing a SolenoidTime RelaysThe Reed RelayMagnetic Circuit BreakerBuzzer and DoorbellMagnetic ShieldsMagnetic Levitation TransportationApplied E&EElectric Guitar

Chapter 10 Generators

- 10.1 Electrical Energy from Mechanical Energy **Magnetic Induction** DC versus AC Construction of a Generator Generator Losses 10.2 Types of Generators Separately Excited Field Generator Applied E&E Motion Simulators Self Excited Generator Voltage and Current Regulation 10.3 Alternating Current Vectors Average and Effective Values Phase Displacement Alternating Current Generator
- Experiment 10-1 Building a Generator

- 10.4 Three-Phase Generators Paralleling Generators Troubleshooting Generators
- 10.5 The Oscilloscope Voltage Measurement Time Period and Frequency Calibration Intensity and Focus Additional Features

Chapter 11 DC Motors

11.1 Motor Operation Principles A Practical Motor Counterelectromotive Force Overload Protection

Applied E&E Submarine

Commutation and Interpoles Speed Regulation

11.2 DC Motors

Shunt DC Motor Series DC Motor Compound DC Motors Motor Starting Circuits Thyristor Motor Controls The Universal Motor Permanent Magnet Motor DC Servo Motor

Chapter 12 Transformers

12.1 Transformer Theory

Induction

Turns Ratio Principle

Transformer Power

Transformer Losses

Impedance

Phase Relationship in Transformers

Taps

12.2 Typical Distribution System

Delta and Wye, Three-Phase Power Systems Grounding

Troubleshooting Transformers

12.3 Special Transformer Applications Autotransformers Induction Circuit Breaker Lighting Ballast Coupling Transformer Isolation Transformers Automobile Ignition Coil

Chapter 13 AC Motors

13.1 Induction Motors

Synchronous Speed Slip Types of Induction Motors Selsyn Unit

13.2 Motor Protection, Failure and Troubleshooting Motor Installation and Protection Motor Failures Troubleshooting Motors

Chapter 14 Inductance and RL Circuits

14.1 Inductance

Producing Stronger and Weaker Magnetic Fields Self Induction

Transient Responses

Experiment 14-1 Self Inductance

14.2 Mutual Inductance

Phase Relationship in Series and Parallel Inductance

14.3 Inductance in AC Circuits

Induced Current and Voltage

Power in Inductive Circuits

Resistance and Inductance in an AC Circuit

Ohm's Law for AC Circuits

Parallel RL Circuit

Applied E & E Inductive Heating

Chapter 15 Capacitance and RC Circuits

- 15.1 Capacitance and the Capacitor Calculating Capacitance Types of Capacitors Tuner Circuits
- 15.2 Transient Response of the Capacitor RC Time Constant Project 15-1 Flashing LED RC Circuit
- Capacitors in Series and Parallel 15.3 Capacitance in AC Circuits Capacitance in AC Circuits Power in Capacitive Circuits Resistance and Capacitance in an AC Circuit
 - Parallel RC Circuit
- Project 15-2 Building a Tunable Electronic Organ

Chapter 16 Tuned Circuits and RCL Networks

- 16.1 RCL Networks Resonance Acceptor Circuit Tank Circuit **Reject Circuit** Q of Tuned Circuits Loading of Tank Circuit 16.2 Filtering Circuits Filtering Action Experiment 16-1 Demonstrate RC Coupling Bypassing Applied E& E Magnetic Resonance Imaging (MRI) Low-Pass Filters **High-Pass Filters Tuned Circuit Filters**
 - Nomograph

Chapter 17 Introduction to Semiconductors and Power Supplies

17.1 Semiconductors Atomic Characteristics Conduction of Electricity Applied E & E Superconductivity Doping 17.2 Semiconductor Diodes

Forward and Reverse Biasing Types of Semiconductor Diodes Diode Characteristics and Ratings Series and Parallel Rectifier Arrangements Testing Diodes

17.3 Power Supplies

Power Supply Functions Power Transformers Half-Wave and Full-Wave Rectification Filters

17.4 Voltage Regulation

Load Resistor

Project 17-1 Building a Voltage Regulator

Voltage Regulator Circuit

- 17.5 Voltage Doublers
- Project 17-2 Building a Trickle Charger
- Project 17-3 Building a Small Power Supply

Chapter 18 Tubs, Transistors and Amplifiers

18.1	Vacuum Tubes
	Thermionic Emitters
	Cathodes
	Diodes
	Triodes
Applied E &	E X-Rays
	Pentodes
	Cathode Ray Tubes
18.2	Transistors
	Field-Effect Transistor
18.3	Transistors as Amplifiers
	Biasing
	Single Battery Circuit
	Methods of Bias
18.4	Amplifier Operation
	Computing Gail
	Decibels
18.5	Transistor Circuit Configurations
	DC Load Line Analysis
	Classes of Amplifiers

Thermal Considerations Transistor Precautions 18.6 Coupling Amplifiers Transformer Coupling RC Coupling Direct Coupling Push-Pull Coupling 18.7Thyristors SCR Triac

Project 18-1 Building a Sound Controlled Robot

Chapter 19 Integrated Circuits

- 19.1 History of the Integrated Circuit
- 19.2 IC Construction
 - Resistors Capacitors Putting It Together Common Types of ICs
 - 19.3 Operational Amplifier (Op Amp) Op Amp Gain Comparator Circuit
- Project 19-1 Building a Voice Recorder
- Project 19-2 Building and Audio Amplifier
 - 19.4 555 Timer

Chapter 20 Digital Circuits

20.1 Digital Fundamentals

Binary Numbering System Voltage Logic Levels in Digital Circuits Bits, Nibbles, and Bytes

Applied E & E Computerized Tomography (CT)

20.2 Logic Gates

AND Gates OR Gates NOT Gates NAND Gates NOR Gates XOR Gates XNOR Gates

- 20.3 Logic Families CMOS Logic Transistor-Transistor Logic
- 20.4 Digital Applications Logic Probe Digital Encoders and Decoders Digitized Analog Signals Flip-Flops Counters

Chapter 21 Oscillators

21.1	Basic Oscillators
	Armstrong Oscillators
	Hartley Oscillators
21.2	Other Oscillators
	Colpitts Oscillators
	Crystal Controlled Oscillators
Applied E &	E Radio Detection and Ranging (RADAR)
	Power Oscillators
	Operational Amplifier Oscillator Circuits

Chapter 22 AM and FM Radio Communications

- 22.1 Simple Radio Receiver
 - Radio Waves

Project 22-1 Building a Crystal Radio

- 22.2 Frequency and Wavelength Frequency Spectrum
- 22.3 Radio Transmitter Continuous Wave Transmitter Microphones Modulation

Project 22-2 Building an AM Transmitter

22.4	Amplit	ude Modulation
		Modulation Patterns
		Sideband Power
22.5	Frequ	ency Modulation
		Narrow Band FM
		Modulation Index
		Percent of Modulation
22.6	AM R	eceiver
		The Tuning Circuit
		RF Amplification
		Detection
22.7	The S	uperheterodyne Receiver
Project 22 -	3	Building a Four-Transistor Radio
		Mixer
		Local Oscillator
		IF Amplifiers
		Detector
		Automatic Gain Control
		Audio Preamplifier
		Alignment
		IC Radios
Applied E &	E	Global Positioning Systems
Project 22 -	4	Building a Superheterodyne Receiver
22.8	FM Re	eceiver
		FM Detection
		Noise Limiting
22.9	Trans	ducers
		Speakers
		Headphones
Project 22 –	5	Building an FM Wireless Mic
		Tone Controls
Chapter 23	Telev	vision and Video Display Units

23.1 Television Signals Television Cameras Scanning Composite Video Signals Basic Cathode Ray Tube Controls 23.2 Television Receivers

Black – and – White Television Receiver Color Television Receiver Television Channel

- 23.3 Television Innovations Video Cassette Recorders Digital Video Recorder Remote Control Large-Screen Projection TV Satellite TV
- 23.4 High Definition Television (HDTV) Digital Camera Technology DHTV Picture Quality Digital Light Projection Television Flat-Panel Displays Display Resolution Philips SXGA Triple-Input Display Controller Standards Organization Home Theater Connector Types

Chapter 24 Fiber Optics and Lasers

- 24.1 Fiber Optics
 - Why Fiber Optics? The Nature of Light Cable Construction Attenuation Splices and Connectors Fiber Optic Transmitters Fiber Optic Receivers Troubleshooting Fiber-Optic Systems
- 24.2 Lasers

Laser Construction

- Types of Lasers
- Applied E & E Night Vision Devices

Laser Applications

Laser Safety

Laser Classifications

Chapter 25 Introduction to the Personal Computer

25.1 PC Repair

Common Points of Hardware Failure Data Recovery Computer Technology Certifications The PC as a Tool

25.2 Computer Design, Components, and Technologies The Case

Form Factor Input Devices

Power Supply

Motherboard

CPU

Memory

BIOS

Chipsets

Mass Storage Devices

CD Drives

Modem

25.3 Software

BIOS Software Operating System (OS) Drivers Viruses

25.4 Computer Devices

Dot Matrix Printer Inkjet Printer Laser Printer Scanner Digital Camera Computer CRT Multimedia Card/Video Adapter Card 25.5 LAN, WAN, And the Internet LAN WAN Internet DSL Cable Modem

Chapter 26 Microcontrollers

26.1 Overview of the Microcontroller

Comparison and Contract of the Microcontroller and Computer Computer Advantages of Using Microcontrollers in Industry

- Disadvantages of Using Microcontrollers in Industry
- 26.2 Microcontroller Components

Ports and Registers Stack Pointer and Program Counter

- ALU
- Oscillator
- Watch Timer
- Memory

Programmable Memory

- 26.3 Programming Languages and Terminology Machine Language, Assembly Language, and High-Level Languages Programming Terminology
- 26.4 The Microcontroller Module Microcontroller Relay Circuit Microcontroller Interface
- 26.5 Getting Started with Microcontrollers

Chapter 27 Career Opportunities in Electronics

- 27.1 Finding a Career
- 27.2 Careers in the Electronics Industry
 - Types of Electronic Industries
 - Careers

Career Information Services Education

- 27.3 Job Search Ideas
- 27.4 Work Habits and Skills Professionalism Leadership

Reference Section

Appendix 1	Scientific Notation
Appendix 2	Color Codes
Appendix 3	Conversions
Appendix 4	Trigonometry
Appendix 5	Standard Symbols and Abbreviations
Appendix 6	Electromagnet Demonstrations Kit
Appendix 7	Ladder Safety
Appendix 8	Soldering Workstation
Appendix 9	Material Safety Data Sheets

Glossary of Terms

Note: All Textbook materials by Richard M. Roberts, including Laboratory Manual, with many additional lab activities, instructor resource material, power point presentation and more can be purchased at <u>G-W.com</u>. List below.

Recommended Textbook, Student Workbook, Instructor Manual, and Complete Classroom and Reference Materials

Electricity & Electronics, by Richard M. Roberts				
Goodheart-Willcox Publisher, Inc., Tinley Park, IL.				
ISBN 978-1-59070-883-5				
ISBN 978-1-59070-884-2				
ISBN 978-1-59070-885-9				
ISBN 978-1-59070-886-6				
ISBN 978-1-59070-887-3				
ISBN 978-1-59070-986-3				
ISBN 978-1-59070-889-7				
ISBN 978-1-59070-891-0				